Introduction

- Bleeding is a common and potentially serious complication of acute and chronic renal failure.
- **Most common**: bleeding at the site of fistula access puncture or temporary venous access insertion.
- **GI bleeding**: is observed in up to 1/3 of uremic patients.
- Other: subdural hematoma, spontaneous retroperitoneal bleeding, spontaneous subcapsular hematoma of the liver, intraocular hemorrhage, and hemorrhagic pericarditis with cardiac tamponade.

Normal Hemostasis

- Hemostasis:
 1. Primary hemostasis
 2. Coagulation
 3. Fibrinolysis

Pathophysiology

- The pathogenesis of bleeding in patients with uremia is considered **multifactorial**.
Platelet abnormalities

- **Moderate thrombocytopenia** is a common finding in uremic patients: severe enough to cause bleeding is very rare.
- **The hemodialysis procedure** may itself cause thrombocytopenia through the interaction of blood with membranes that may activate complement (e.g., cuprophane) or from heparin that occasionally may induce thrombocytopenia by an immunologic mechanism.

Role of anemia

- **RBCs:**
 1. Increase platelet–vessel wall contact
 2. Enhance platelet function by releasing ADP and inactivating PGI2

- **Hb:** a scavenger of NO

These mechanisms may explain why in uremic patients bleeding time is shortened after partial correction of anemia by red blood cell transfusions or administration of EPO.

Dialysis

- **Dialysis** improves platelet functional abnormalities and reduces, but does not eliminate, the risk of hemorrhage.
- **The interaction between blood and artificial surfaces:** may lead to platelet exhaustion and dysfunction.
- **Heparin:** occasionally induce platelet activation and thrombocytopenia

Role of drugs

- **b-Lactam antibiotics:** act by perturbing platelet membrane function and by interfering with ADP receptors, raise the risk of bleeding due to their accumulation in uremic patients.

- **Third-generation cephalosporins:** inhibit platelet function and lead to marked disturbance of blood coagulation

- **NSAID:** inhibit platelet cyclooxygenase and disturb platelet function

- **Aspirin**
 1. The beneficial effect of aspirin can be achieved with a moderate dose (160 mg/day) that inhibits platelet TxA2 generation without affecting vascular PGI2 formation.
 2. This dose of aspirin may have a much greater effect on bleeding time in uremic patients than in healthy subjects
 3. A lasting effect due to the irreversible blocking of platelet cyclooxygenase
Laboratory assessment

- Activated partial thromboplastin time, prothrombin time, and thrombin time are generally normal in uremia.
- No good correlation has been found between BUN or creatinine and clinical bleeding.
- The **cutaneous bleeding time** (normal values: 1–7 minutes) is the best laboratory hallmark of clinical bleeding caused by uremia.

Therapeutic strategy

1. **Dialysis**
2. Correction of anemia
3. Cryoprecipitate and desmopressin
4. Conjugated estrogen
5. Tranexamic acid
6. Recombinant activated factor VII

Dialysis

- Dialysis by removing uremic toxins (including urea, creatinine, phenol, phenolic acids, and GSA) improves platelet functional abnormalities.
- Dialysis may contribute to bleeding tendency through platelet activation induced by interaction of blood with the artificial surface as well as the use of systemic anticoagulation.

- Peritoneal dialysis is more effective in correcting platelet abnormalities than hemodialysis.
- However, in some cases, hypoalbuminemia (frequent in peritoneal dialysis) may cause platelet hyper-reactivity which favors thrombosis.

Alternative strategies: regional anticoagulation with heparin and protamine, low-dose heparin, hemodialysis without anticoagulation, the use of low-molecular-weight heparin (LMWH), and regional anticoagulation with citrate.

Therapeutic strategy

1. **Heparin + Protamine:** This technique has been abandoned because of a rebound systemic anticoagulation after the completion of dialysis together with technical complexity.
2. **Heparin-free dialysis:** associated with biochemical activation of the clotting system
3. **LMWH:** not clear whether LMWH offers any advantage over anticoagulation with unfractionated heparin because only minor differences can be detected
4. **Citrate**: safe and more effective than others in hemodialysis patients with an active (or recently active) bleeding focus; ✓ Complication: citrate intoxication, hyperaluminemia, hyperammonemia, hypernatremia, and profound metabolic alkalosis

5. **Dermatan sulfate**: A comparative short-term clinical study on few patients → dermatan sulfate suppresses clot formation during hemodialysis as efficiently as heparin but long-term comparative trials are warranted.

6. **Antiplatelet drugs** (eg, sulfinpyrazone, adenosine, and PGE1): no advantage over heparin

7. **Aspirin and dipyridamole analogs**: reduce fibrin and cellular deposition on the filter membrane but increase the risk of GI bleeding

8. **PGI2**: showing some promise, but adverse reactions such as headache, flushing, tachycardia, and chest and abdominal pain

Correction of anemia

- Patients with chronic renal failure and prolonged bleeding time consistently benefited from red cell transfusions.
- **EPO**: A randomized study established that in uremic patients on rhEPO a threshold hematocrit between 27% and 32% effectively normalized bleeding time.

Cryoprecipitate

- **Cryoprecipitate**: rich in VWF, fibrinogen, and fibronectin that has traditionally been used in the treatment of hemophilia A, von Willebrand’s disease, hypofibrinogenemia, and dysfibrinogenemia.
- The effect of cryoprecipitate is apparent 1 hour after infusion, but maximal effects on the bleeding time are obtained 4–12 hours (average: 8 hours) after the infusion. By 24–36 hours, the effect of cryoprecipitate is no longer detected.
- As many as 50% of patients fail to respond to cryoprecipitate.
- Risk of transmitting blood-borne disease

Desmopressin (DDAVP)

- **DDAVP** induces the release of autologous VWF from storage sites into plasma.
- **DDAVP** shortens the bleeding time in 1 hour and its effect lasts 4–8 hours. Bleeding time returns to baseline values within 24 hours.
- **DDAVP** was effective at a dose of 0.3 μg/kg body weight IV or SC.
- At 10 to 20 times the intravenous dose, intranasal desmopressin (3 μg/kg) shortens the prolonged bleeding time.
- **Desmopressin** loses its efficacy when repeatedly administered, probably due to a progressive depletion of VWF stores in endothelial cells.
- **Free of serious side effects**
- Treatment of bleeding and the prevention of bleeding during surgery or invasive procedures
Conjugated estrogen

- Long lasting hemostatic competence, such as undergoing surgery or GIB
- One oral dose of 25 mg of a conjugated estrogen preparation normalizes bleeding time for 3–10 days with no apparent ill effects
- In uremics: a cumulative dose of 3 mg/kg IV divided over five consecutive days, produced a long-lasting reduction in the bleeding time

Tranexamic acid (TXA)

- Preventing the binding of plasminogen to fibrin and the activation of plasminogen to plasmin
- Colonic angiodysplasias and spontaneous subdural and cerebral hematomas in dialysis patients and, as adjunctive therapy, in treating major UGI bleeding in dialysis patients
- Accumulate in renal insufficiency

Recombinant activated factor VII

- Enhancing thrombin generation on thrombin-activated platelet surfaces and leading to a stable clot resistant to premature fibrinolysis
- Initial → treatment of hemorrhages in patients with hemophilia associated with antibodies inactivating factor VIII or IX

Conclusion

- Bleeding is still a potentially life-threatening complication in uremic patients and limits surgery and invasive procedures.
- Acute bleeding episode: DDAVP
- GI or intracranial bleeding; undergoing major surgery: conjugated estrogen