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Disorders of Potassium and Acid-Base Balance
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ACID-BASE DISORDERS

hysiology of Acid-Base Balance

efinitions of acid-base disorders

● Metabolic acidosis: fall in HCO� concentra-
tion with fall in pH

● Metabolic alkalosis: rise in HCO� concen-
tration with rise in pH

● Respiratory acidosis: rise in CO� concentra-
tion with fall in pH

● Respiratory alkalosis: fall in CO� concen-
tration with rise in pH

ompensatory response to acid-base disorders

● Metabolic acidosis: fall in pH causes in-
creased respiration, reducing CO2

● Metabolic alkalosis: rise in pH causes de-
creased respiration, increasing CO2

● Respiratory acidosis: fall in pH causes
increased renal H� secretion, raising
HCO3

� concentration
● Respiratory alkalosis: rise in pH causes

diminished renal H� secretion, lowering
HCO3

� concentration
● See Table 1

esponse to acid generation

Average 1 mEq/kg/d for typical Western diet.
● Blood buffering of newly formed acid by

bicarbonate, creation of CO2

● Less efficient buffering of acid by hemoglo-
bin in red blood cells, Ca2� exchange in
bone

● Renal handling of acid:
� Hydrogen excretion by proximal tubule

(PT) into lumen leads to reclamation and
reabsorption of HCO3

�

� H� then combines with either HPO4
2�

or HSO4 (“titratable acids”) or NH3 in
tubular lumen; 10 to 40 mEq of H�

excreted each day as titratable acidity, 30
to 60 mEq/d by NH4

�

� Reclamation of filtered bicarbonate oc-
curs primarily in PT

� Under conditions of excessive acid gen-

eration (metabolic acidosis), ammoni-

merican Journal of Kidney Diseases, Vol 45, No 5 (May), 2005: p
agenesis is required to enhance acid
secretion:
E NH4

� produced by renal tubular cells
from metabolism of amino acids (pri-
marily glutamine)

E NH4
� reabsorbed in thick ascending

loop and recycled as NH3 in renal
medulla

E NH3 diffuses into tubular lumen,
trapped as NH4

� by secreted H�

E Glutamine metabolism enhanced
by hypokalemia, inhibited by
hyperkalemia

ellular mechanisms of renal adaptation

● To respiratory acidosis:
� Increased PT cell secretion of hydrogen

ion due to decreased cell pH
� Increased PT cell secretion of H� via

Na�/H� exchanger, and increased reab-
sorption of HCO3

� via Na�/3HCO3
�

cotransporter on basolateral surface
● To respiratory alkalosis:

� Decreased PT cell activity of carbonic
anhydrase

� Decreased PT cell secretion of H� and
decreased reabsorption of HCO3

�

etabolic Acidosis

auses

● Increased acid load:
� Lactic acidosis
� Ketoacidosis
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WISEMAN AND LINAS942
� Ingestions:
E Salicylates
E Methanol
E Ethylene glycol
E Paraldehyde
E Sulfur
E Toluene
E Ammonium chloride
E Hyperalimentation fluids

● Extrarenal acidosis:
� HCO3

� losses via gastrointestinal loss:
E Diarrhea
E Intestinal fistula
E Ureterosigmoidostomy

● Renal acidosis:
� Defect in HCO3

� reclamation:
E Type 2 “proximal” renal tubular acido-

sis (RTA)
� Defect in HCO3

� regeneration:
E Diminished NH4

� production (renal
failure, hypoaldosteronism-type IV
RTA)

E Diminished H� secretion (type I RTA)
● Utility of plasma and urine anion gap:

� Plasma anion gap:
E [Na�] – ([Cl�] � [HCO3

�]); nor-
mally 8 to 11 mEq/L (mmol/L)

E Buffering of HA (proton-anion) by
HCO3

� in setting of increased acid
load leads to increased unmeasured
anions (A�) and increased anion gap

� Urine anion gap:
E ([Na�] � [K�]) - [Cl�]
E In setting of metabolic acidosis with

normal plasma anion gap (“hyperchlo-
remic metabolic acidosis”), urine an-
ion gap is useful to distinguish be-

Table 1. Formulae Quantify

Disorder

etabolic acidosis CO
etabolic alkalosis CO
espiratory acidosis
Acute HC
Chronic HC
espiratory alkalosis
Acute HC
Chronic HC
tween extrarenal and renal acidosis
E Urine anion gap greater than 0 sug-
gests failure to excrete acid load (eg,
RTA)

E Urine anion gap less than 0 suggests
extrarenal bicarbonate loss (eg,
diarrhea)

enal tubular acidosis

Hyperchloremic metabolic acidosis, normal
erum anion gap, urine anion gap greater than 0.

Type I RTA (defect in H� secretion in distal
ubule).

● Physiology:
� H�-adenosine triphosphatase (ATPase)

located in cortical collecting tubule (inter-
calated cells only), where H� secretion
influenced by Na� reabsorption in princi-
pal cells, and in medullary collecting
duct

● Pathophysiology:
� Defect in distal H�-ATPase pump

(Sjögren syndrome), increased collect-
ing duct membrane permeability with
back-diffusion of H� (amphotericin B),
decreased distal delivery of Na� with
failure to exchange for H� and K�

(volume depletion), or decreased cortical
reabsorption of Na� with net increase in
luminal charges and inhibition of H� and
K� secretion (“hyperkalemic type I
RTA,” as in urinary tract obstruction or
sickle cell disease)

� Calcium and phosphate release from
bone to buffer acidemia leads to propen-
sity for nephrocalcinosis in type I RTA

● Diagnosis:
� Urine pH �5.3
� Plasma K� usually low or normal (ex-

e Degree of Compensation

Compensation

eases by 1.0-1.5 � the decrease in arterial HCO3
�

ases by 0.25-1.0 � the increase in arterial HCO3
�

creases by about 1 for each 10–mm Hg increase in CO2

creases by about 4 for each 10–mm Hg increase in CO2

creases by about 1 for each 10–mm Hg decrease in CO2

creases by about 4 for each 10–mm Hg decrease in CO2
ing th

2 decr
2 incre

O3
� in

O3
� in

O3
� de
cept with voltage defect)
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CORE CURRICULUM IN NEPHROLOGY 943
� Plasma HCO3
� low (�14 mEq/L

[mmol/L])
● Treatment:

� HCO3
� 1-2 mEq/kg/d

Type II RTA (defect in PT HCO3
� reclama-

ion).
● Physiology:

� Filtered HCO3
� reabsorbed primarily in

the PT after the addition of a proton in
lumen (Na�/H� antiporter), forming
H2CO3, and conversion to CO2 and H2O
facilitated by carbonic anhydrase

� CO2 diffuses across apical membrane
and converted to HCO3

� again by car-
bonic anhydrase

� HCO3
� then transported to blood by

Na�/3HCO3
� cotransporter

� Distal nephron contributes a trivial
amount of HCO3

� reabsorption via inter-
calated cell of collecting duct

● Pathophysiology:
� Injury to luminal Na�/H� antiporter or

basolateral Na�-K�-ATPase pump
(likely etiologies for type II RTA in
multiple myeloma, Fanconi syndrome,
ifosfamide therapy) or deficient/inhib-
ited carbonic anhydrase (cystinosis, acet-
azolamide therapy)

� Acidosis milder than type I RTA due to
intact reabsorption of HCO3

� in distal
nephron

� Often evidence of generalized PT dys-
function is present, with glycosuria, ami-
noaciduria, and phosphaturia

● Diagnosis:
� Urine pH �5.3 if above reabsorptive

threshold, �5.3 in steady state, plasma
K� usually low, plasma HCO3

� 14 to 20
mEq/L (mmol/L)

● Treatment:
� HCO3

� 10 to 15 mEq/kg/d
Type IV RTA (aldosterone deficiency or

esistance).
● Physiology:

� Aldosterone promotes distal Na� reab-
sorption, K� and H� secretion

� Direct effects of aldosterone on Na and
K channels in luminal membrane of
principal cells in cortical collecting tu-
bule, increased Na�-K�-ATPase pump

activity in basolateral membrane, and
H�-ATPase pump activity in intercalated
cells in cortical collecting duct, medul-
lary collecting tubule cells

� Indirect effects of aldosterone in H�

secretion secondary to electrochemical
gradient induced by Na� reabsorption

● Pathophysiology:
� Decreased adrenal aldosterone produc-

tion (heparin, tuberculosis, adrenal insuf-
ficiency)

� Decreased activity of renin-angiotensin
system (diabetes, renal insufficiency, an-
giotensin-converting enzyme inhibitors/
angiotensin receptor blockers)

� Resistance to aldosterone (potassium-
sparing diuretics, trimethoprim,
pseudohypoaldosteronism)

� Acidosis exacerbated by hyperkalemia-
induced inhibition of glutaminase with
diminished ammoniagenesis

● Diagnosis:
� Urine pH �5.3, plasma K� high, plasma

HCO3
� 14 to 20 mEq/L (mmol/L)

● Treatment:
� Correct hyperkalemia, HCO3

� 1 to 2
mEq/kg/d

RTA of renal insufficiency (reduction in
ephron mass).
● Physiology:

� Under normal conditions, ammonium
excretion increases in response to an acid
load, as described earlier in the Physiol-
ogy/Response to Acid Generation subsec-
tion; this increase can be up to 3 to 4
times normal, but is limited by glomeru-
lar filtration rate (GFR)

● Pathophysiology:
� Fibrosis that occurs with chronic kidney

disease leads to diminished functional
nephron number and diminished capac-
ity for ammoniagenesis

� At GFR less than 40 to 50 mL/min (0.67
to 0.83 mL/s), total ammonium excretion
diminishes

� H� is retained but a reduction in HCO3
�

is stabilized at serum levels of 12 to 20
mEq/L by calcium buffering from bone

● Diagnosis:

� Measurement of GFR
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● Treatment:
� NaHCO3 therapy can be used to mini-

mize bone buffering of acidemia and
delay development of osteopenia, but
this benefit must be weighed against
risks of sodium retention

� Indications for use of alkali include:
E Dyspnea/inability to maintain respira-

tory compensation
E Chronic kidney disease in children (at

risk of growth retardation)
E Severe acidosis with plasma HCO3

�

less than 12 mEq/L (mmol/L)

reatment

Anion gap acidosis.
● Treat underlying disease process
● With saline hydration, NaCl � HA ¡

kidney excretes NaA rather than NH4
�

● Transition from “anion gap” to “nonanion
gap” acidosis in the hydrated patient during
treatment

Lactic acidosis and ketoacidosis.
● Treat underlying disease process
● Controversies surround use of bicarbonate-

containing fluids in ketoacidosis and lactic
acidosis due to potential risk of worsening
intracellular acidosis and lack of clinical
benefit

Ingestions.
● Competitive inhibition of alcohol dehydro-

genase with ethanol or fomepizole for alco-
hol ingestions

● Indications for hemodialysis treatment un-
der conditions of ethylene glycol, metha-
nol, and salicylate ingestion

Rhabdomyolysis.
● Enhancement of myoglobin excretion with

alkalinization of urine with bicarbonate-
containing fluids, hemodialysis

Renal tubular acidosis.
● Identify type of RTA by urine pH, serum

potassium
● Calculate bicarbonate deficits, replacement

needs, and maintenance dosing of bicarbon-
ate in cases of RTA types I, II, and IV

etabolic Alkalosis

auses

Two phases of metabolic alkalosis:

Generation phase.
Factors that generate a metabolic alkalosis:
● Loss of hydrogen due to gastrointestinal

losses:
� Gastric suction
� Vomiting
� Antacid therapy
� Chloride-losing diarrhea

● Renal losses:
� Diuretics
� Mineralocorticoid excess
� Hypercalcemia/milk-alkali syndrome
� Low chloride intake

● H� shift into cells:
� Hypokalemia
� Refeeding

● Retention of bicarbonate:
� Massive blood transfusions
� NaHCO3 administration

● Contraction alkalosis:
� Diuretics
� Sweat losses in cystic fibrosis

Maintenance phase.
Factors that permit maintenance of metabolic

lkalosis:
● Decreased GFR (due to volume depletion

or renal failure) or
● Increased tubular reabsorption of HCO3

�

(due to volume depletion, chloride deple-
tion, hypokalemia, hyperaldosteronism)

Urinary chloride measurement in diagnosis
f metabolic alkalosis.
● Urine Cl� �10 mEq/L (mmol/L):

� Vomiting
� Nasogastric suction
� Diuretics

● Urine Cl� �20 mEq/L (mmol/L):
� In hypertension:

E Cushing syndrome
E Primary hyperaldosteronism
E Hypokalemia
E Glucocorticoid remediable aldosteron-

ism
E Conditions of apparent mineralocorti-

coid excess
� With normal/low blood pressure:

E Bartter syndrome
E Gitelman syndrome

reatment

● Metabolic alkalosis with low urinary chlo-

ride:
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� Normal saline or ½ normal saline lowers
plasma HCO3

� by reversing the stimu-
lus to renal Na� retention, permitting
NaHCO3 excretion, and increasing distal
Cl� delivery, which promotes HCO3

�

secretion (“saline-responsive alkalosis”)
● Metabolic alkalosis with high urinary chlo-

ride:
� Treatment of underlying disorder (eg,

adrenal adenoma resection) and reple-
tion of potassium

espiratory Acidosis

auses

● Inhibition of respiratory drive:
� Opiates
� Anesthetics
� Sedatives
� Central sleep apnea
� Obesity
� Central nervous system lesions

● Disorders of respiratory muscles:
� Muscle weakness:

E Myasthenia gravis
E Periodic paralysis
E Aminoglycosides
E Guillain-Barré syndrome
E Spinal cord injury
E Acute lateral sclerosis
E Multiple sclerosis

� Kyphoscoliosis
● Upper airway obstruction:

� Obstructive sleep apnea
� Laryngospasm
� Aspiration

● Lung disease:
� Pneumonia
� Severe asthma
� Pneumothorax
� Acute respiratory distress syndrome
� Chronic obstructive pulmonary disease
� Interstitial lung disease

enal adaptation

● Elevated PCO2 in PT leads to decreased
intracellular pH, enhances H� secretion in
PT, leading to increased HCO3

� generation
over 5 days (3 to 5 mEq/L [mmol/L]
HCO3

� for every 10–mm Hg increase in

PCO2)
reatment

● Ventilatory support
● NaHCO3

� therapy controversial in this
disorder:
� Perhaps beneficial in severely acidemic

patient (eg, status asthmaticus) versus
� Hazards of therapy in patients with re-

versible hypercapnea (eg, chronic ob-
structive pulmonary disease in which
respiratory drive is depressed)

espiratory Alkalosis

auses

● Hypoxemia
� Pulmonary diseases:

E Pneumonia
E Interstitial fibrosis
E Emboli
E Edema

� Congestive heart failure
� Anemia

● Stimulation of the medullary respiratory
center:
� Hyperventilation
� Hepatic failure
� Septicemia
� Salicylate intoxication
� Pregnancy
� Neurologic disorders

● Mechanical ventilation

ymptoms

● Lightheadedness
● Paresthesias
● Cramps
● Carpopedal spasm

enal adaptation

● Decreased PCO2 in PT leads to increased
intracellular pH, inhibits H� secretion in
the PT, leading to decreased HCO3

� genera-
tion over 5 days (reduces serum concentra-
tion of HCO3

� 3 to 5 mEq/L [mmol/L] for
every 10–mm Hg decrease in PCO2)

reatment

● Correction of underlying disorder
● Increasing PCO2 in inspired air (breathing

into paper bag) in setting of acute respira-

tory alkalosis
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WISEMAN AND LINAS946
ixed Acid-Base Disorders

iagnosis

● Identified by inappropriate or inadequate
correction using the formulae for renal and
respiratory compensation described in
Table 1

ommon scenarios

● Mixed respiratory acidosis and metabolic
alkalosis (eg, chronic obstructive pulmo-
nary disease and diuretic therapy)

● Mixed metabolic acidosis and metabolic
alkalosis (eg, ketoacidosis and vomiting)

● Mixed respiratory alkalosis and metabolic
acidosis (salicylate intoxication)

hange in serum anion gap (�AG)

● Use of �AG to determine if mixed acid-
base disturbance is present

● The �AG � measured anion gap – ex-
pected anion gap

● The �AG is most useful to distinguish
concomitant metabolic alkalosis and anion
gap metabolic acidosis

● If �AG � measured bicarbonate is greater
than physiologic bicarbonate concentra-
tions (eg, 21 to 27 mEq/L [mmol/L]), an
underlying metabolic alkalosis is present

ADDITIONAL READING

1. Arbus GS, Hebert LA, Levesque PR, Etsten BE,
chwartz WB: Characterization and clinical application of

he “significance band” for acute respiratory alkalosis. N Engl
Med 280:117-123, 1969

2. Batlle DC: Segmental characterization of defects in
ollecting tubule acidification. Kidney Int 30:546-554, 1986

3. Batlle DC, Hizon M, Cohen E, et al: The use of the
rinary anion gap in the diagnosis of hyperchloremic meta-
olic acidosis. N Engl J Med 318:594-599, 1988

4. Brent J, McMartin K, Phillips S, et al: Fomepizole for
he treatment of ethylene glycol poisoning. Methylpyrazole
or Toxic Alcohols Study Group. N Engl J Med 340:832-
38, 1999

5. Caruana RJ, Buckalew VM Jr: The syndrome of distal
type 1) renal tubular acidosis: Clinical and laboratory
ndings in 58 cases. Medicine (Baltimore) 67:84-99, 1988

6. Field M, Rao MC, Chang EB: Intestinal electrolyte
ransport and diarrheal disease (1). N Engl J Med 321:800-
06, 1989

7. Foster DW, McGarry JD: The metabolic derangements
nd treatment of diabetic ketoacidosis. N Engl J Med 309:
59-169, 1989

8. Gabow PA, Kaehny WD, Fennessey PV, Goodman SI,
ross PA, Schrier RW: Diagnostic importance of an in-
reased anion gap. N Engl J Med 303:854-858, 1980
9. Graf H, Leach W, Arieff AI: Evidence for a detrimental
ffect of bicarbonate therapy in hypoxic lactic acidosis.
cience 227:754-756, 1985

10. Jacobson HR, Seldin DW: On the generation, mainte-
ance, and correction of metabolic alkalosis. Am J Physiol
45:F425-F432, 1983

11. Karet FE, Finberg KE, Nelson RD, et al: Mutations in
he gene encoding B1 subunit of H�-ATPase cause renal
ubular acidosis with sensorineural deafness. Nat Genet
1:84-90, 1999

12. Krapf R, Beeler I, Hertner D, Hulter HN: Chronic
espiratory alkalosis: The effect of sustained hyperventila-
ion on renal regulation of acid-base equilibrium. N Engl
Med 324:1394-1401, 1991

13. Kurtz I, Maher T, Hulter HN, Schambelan M, Sebas-
ian A: Effect of diet on plasma acid-base composition in
ormal humans. Kidney Int 24:670-680, 1983

14. Levy LJ, Duga J, Girgis M, Gordon EE: Ketoacidosis
ssociated with alcoholism in nondiabetic subjects. Ann
ntern Med 78:213-219, 1973

15. Narins RG, Cohen JJ: Bicarbonate therapy for or-
anic acidosis: The case for its continued use. Ann Intern
ed 106:615-618, 1987
16. Pierce NF, Fedson DS, Brigham KL, Mitra RC, Sack

B, Mondal A: The ventilatory response to acute base deficit
n humans: Time course during development and correction
f metabolic acidosis. Ann Intern Med 72:633-640, 1970

17. Roth KS, Foreman JW, Segal S: The Fanconi syn-
rome and mechanisms of tubular transport dysfunction.
idney Int 20:705-716, 1981

18. Sherman RA, Eisinger RP: The use (and misuse) of
rinary sodium and chloride measurements. JAMA 247:3121-
124, 1982

19. Szylman P, Better OS, Chaimowitz C, Rosler A: Role
f hyperkalemia in the metabolic acidosis of isolated hypoal-
osteronism. N Engl J Med 294:361-365, 1976

20. Widmer B, Gerhardt RE, Harrington JT, Cohen JJ:
erum electrolyte and acid-base composition: The influence
f graded degrees of chronic renal failure. Arch Intern Med
39:1099-1102, 1979

21. White PC: Disorders of aldosterone biosynthesis and
ction. N Engl J Med 331:250-258, 1994

DISORDERS OF POTASSIUM (K)

hysiology of K Balance

Total body K determined by internal and exter-
al K balance:

nternal balance

Factors that regulate:
● Acid-base/metabolic acidosis: differences

between organic (limited K shifts) and
inorganic hyperchloremic acidosis

● Insulin: K moves from extracellular to
intracellular sites

● Tonicity: hyperglycemia, mannitol moves

K from intracellular to extracellular sites
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● B2 adrenergic receptor: Catecholamines
through B2 adrenergic receptor move K
into cells; � adrenergic receptor prevents K
movement from extracellular to cellular
compartments

● Clinical correlate: “stress hypokalemia”

xternal balance

Renal K physiology:
● K freely filtered
● Filtered K reabsorbed in proximal convo-

luted tubule and proximal straight tubule
● K added to distal loop of Henle (at least in

deep glomeruli) so that, at tip of loop,
fractional excretion of K (FEK) 150% of
filtered load

● K reabsorbed in ALH (Na, K2Cl cotrans-
porter) so that, at beginning of distal convo-
luted tubule, FEK 15% of filtered load

● K added to lumen of cortical collecting
tubule so that, at end of this tubule, FEK

100% of filtered load
● K secretion mediated by Na reabsorption

through Na channel followed by Na extru-
sion by basolateral Na, K ATPase, resulting
in increases in cell K and K extrusion into
the lumen through K channels

● K secretion regulated by aldosterone secre-
tion (regulated by angiotensin II and total
body K) and action (regulated by 11 B-OH
steroid dehydrogenase and mineralocorti-
coid receptor) as well as distal nephron Na
delivery and concentration

● K reabsorbed by collecting tubule, through
K/H exchange (regulated by decreases in
total body K)

● Urine K is independent of GFR above 30
mL/min (0.50 mL/s)

● Increases in urinary K are due to increases
in K secretion or decreases in K reabsorption

ADDITIONAL READING

1. Brown MJ, Brown DC, Murphy MB: Hypokalemia
rom beta2-receptor stimulation by circulating epinephrine.

Engl J Med 309:1414-1419, 1983
2. Struthers AD, Whitesmith R, Reid JL: Prior thiazide

iuretic treatment increases adrenaline-induced hypokale-
ia. Lancet 1:1358-1360, 1983
3. Williams ME, Rosa RM, Silva P, Brown RS, Epstein

H: Impairment of extrarenal potassium disposal by alpha-

drenergic stimulation. N Engl J Med 311:145-149, 1984
4. Giebisch G, Malnic G, Berliner RW: Control of renal
otassium excretion, in Brenner BM, Rector FC (eds): The
idney. Philadelphia, Saunders, 2000, pp 417-454

5. Giebisch G: Renal potassium transport: Mechanisms
nd regulation. Am J Physiol 274:F817-F833, 1998

6. Scheinman S, Guay-Woodford LM, Thakker RV, War-
ock DG: Genetic disorders of renal electrolyte transport.
Engl J Med 340:1177-1187, 1999

ypokalemia

efinition

● Serum K less than 3.5 mEq/L (mmol/L)

auses

Normal total body K/transcellular shift.
● Alkalemia
● Insulin excess
● “Stress” (eg, asthma attack, acute coronary

syndrome, drug intoxication [cocaine] or
withdrawal [alcohol], B2 adrenergic drugs)

● Hypokalemic periodic paralysis
● Thyrotoxicosis
● Refeeding syndromes
● Barium
● Cesium hypothermia
Decreased total body K.
● Decreased K intake, or
● Increased K losses:

� Gastrointestinal
� Renal

Spurious.
● Extreme leukocytosis

iagnostic approach

To decreases in total body K: use of urine K
oncentration, 24-hour urine K, transtubular K
radient:
Low 24-hour urine K (<20 mEq [mmol]/d):

xtrarenal losses.
● Metabolic acidosis: gastrointestinal losses
● Normal pH: decreased intake, gastrointesti-

nal losses
● Metabolic alkalosis: gastrointestinal losses
High 24-hour urine K (>20 mEq [mmol]/

): renal losses.
● Metabolic alkalosis:

� Low urine chloride (�10 mEq [mmol]/
d): vomiting, diuretics

� High urine chloride (�20 mEq [mmol]/

d): hypertension:
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WISEMAN AND LINAS948
E “Normal” aldosterone: Cushing syn-
drome, Liddle syndrome, apparent
mineralocorticoid excess syndrome

E High aldosterone: primary aldosteron-
ism, glucocorticoid remediable aldo-
steronism

E Normal or low blood pressure: diuret-
ics (during therapy), severe K deple-
tion, Bartter syndrome, Gitelman
syndrome

● Variable pH:
� Magnesium depletion
� Anionic drugs

● Metabolic acidosis
� RTA types I and II

linical manifestations

● Cardiovascular:
� Arrhythmias
� Digitalis toxicity

● Neuromuscular:
� Smooth muscle:

E Ileus
� Skeletal muscle:

E Weakness
E Paralysis
E Rhabdomyolysis

● Endocrine:
� Glucose intolerance

● Renal/electrolyte:
� Vasopressin resistance
� Increased ammonia production
� Metabolic alkalosis

● Structural changes:
� Renal cysts
� Interstitial changes
� PT dilation, vacuolization

reatment

● Estimate of K deficit: serum K may not
reflect total body K

● Reverse source of K loss
● Symptomatic: intravenous K (rate, compli-

cations)
● Asymptomatic:

� Metabolic acidosis:
E K plus citrate, or
E HCO3

� Metabolic alkalosis:

E K plus NaCl (chloride responsive)
E Role of spironolactone, amiloride
(chloride resistant)

� Importance of magnesium therapy

ADDITIONAL READING

1. Osorio FV, Linas SL: Disorders of potassium metabo-
ism, in Schrier RW (ed): Atlas of Diseases of the Kidney
vol 1; section 1, Disorders of Water, Electrolytes and
cid-Base). Philadelphia, Current Medicine, 1998, pp 2-17

2. Weiner ID, Wingo CS: Hypokalemia: Consequences,
auses, correction. J Am Soc Nephrol 8:1179-1188, 1997

3. Ganguly A: Primary aldosteronism. N Engl J Med
39:1828-1834, 1998

4. Galla JH: Metabolic alkalosis. J Am Soc Nephrol
1:369-375, 2000

yperkalemia

efinition (mmol/L)

● Serum K �5.0 mEq/L (mmol/L)

auses

Normal total body K: transcellular shift.
● Exercise, especially in setting of � adrener-

gic receptor blockade and mineral acidosis
● Hyperchloremic metabolic acidosis
● Insulin deficiency
● Hypertonicity
● � adrenergic receptor stimulation
● Tissue breakdown or ischemia, for ex-

ample:
� Rhabdomyolysis
� Gastrointestinal
� Brain

Increased total body K.
● Increased intake: rare as sole cause
● Decreased renal K excretion
Spurious.
● Thrombocytosis
● Leukocytosis
● Ischemic blood draw

iagnostic approach

To increases in total body K: use of urine K
oncentration, 24-hour urine K, and/or transtubu-
ar K gradient (SK/Urine K � Sosm/Uosm):

Normal to high 24-hour urinary K (>40 to
0 mEq [mmol]/d):
● Relative increase in K intake
Low 24-hour urinary K (<20 to 40 mEq

mmol]/d):
● Decrease renal K excretion:
� GFR �20 mL/min (0.33 mL/s):
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E Decreased distal nephron Na delivery
E Decreased mineralocorticoid produc-

tion or action
E Decreased total body Na
E Increased total body Na:

□ heart failure
□ cirrhosis

E Decreased production:
□ Addison disease
□ Isolated hypoaldosteronism (he-

reditary, acquired, drugs [angio-
tensin-converting enzyme inhibi-
tors, heparin, nonsteroidal anti-
inflammatory drugs, COX2

inhibitors], infection [human im-
munodeficiency virus], chronic
kidney disease [diabetes, tubular
interstitial diseases, others])

E Decreased action:
□ Hereditary (pseudohypoaldoste-

ronism types I and II)
□ Acquired (drugs [angiotensin re-

ceptor blockers, amiloride, spi-
ronolactone, triamterene] and
pseudohypoaldosteronism [he-
reditary, acquired: sickle cell dis-
ease, renal allograft disease,
obstruction])

� GFR �20 mL/min (0.33 mL/s):
E Endogenous or exogenous K
E Drugs that impair K excretion

linical manifestations

● May be disproportionately greater than level
of serum K

● Cardiovascular:
� T-wave abnormalities
� Lengthened segments
� Bradyarrhythmias

● Neuromuscular:
� Ileus
� Paresthesias
� Weakness
� Paralysis
● Renal/electrolyte: 1
� Decreased ammonia production
� Metabolic acidosis

reatment

● Who requires emergent therapy:
� Electrocardiogram abnormalities
� Ileus
� Paralysis

● Emergent therapies:
� Doses, pharmacology
� Stabilize cell membrane: Ca
� Shift K from extra to intracellular com-

partments:
E Insulin (	 glucose)
E HCO3

E Albuterol (B2 adrenergic receptor
agonist)

� Decrease total body K
E K exchange resin (oral or rectal)
E Hemodialysis

● Prevention of hyperkalemia:
� Importance of diet
� Recognition of drugs that decrease K

secretion
� Role of adequate distal Na delivery
� K exchange resins
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