Acute Renal Failure

Belda Dursun, MD, and Charles L. Edelstein, MD, PhD

EPIDEMIOLOGY

- **Incidence:**
 - Community: Less than 1%
 - Hospital: 2% to 7%
 - Intensive care unit (ICU)/postoperative: 4% to 25%
- **Risk factors for postoperative renal failure:**
 - Age >70 years
 - Insulin-dependent diabetes mellitus
 - Chronic renal failure
 - Left ventricular dysfunction
- **Significant associated mortality in ICU:** 43% to 88%
- **Independent predictor of mortality**
- **Factors increasing mortality:**
 - Multiorgan failure
 - Respiratory failure
 - Cardiovascular dysfunction
 - Significantly longer length of hospital stay
 - Formidable health care costs

PATHOPHYSIOLOGY OF ACUTE TUBULAR NECROSIS

Vascular Factors

- Alterations in regional blood flow
- Increased sensitivity to vasoconstrictor stimuli
- Increased sensitivity to renal nerve stimuli
- Impaired autoregulation
- Endothelial injury

- Decreased nitric oxide derived from endothelial nitric oxide synthase
- Increased endothelin
- Decreased prostaglandins
- Leukocyte adhesion to endothelium

Sublethal Reversible Proximal Tubular Injury

- Cytoskeletal disruption
- Loss of polarity
- Tubular obstruction
- Abnormal gene expression

Tubular Factors

Proximal tubular necrosis

- Calcium influx
- Metalloproteases
- Oxygen radicals
- Lipid peroxidation
- Nitric oxide derived from inducible nitric oxide synthase
- Defective heat shock protein response
- Phospholipase A₂
- Calpain
- Caspase-1
- Neutrophils
- T cells

Proximal tubular apoptosis

- Caspase-3
- Endonucleases
- Insulin-like growth factor (IGF) deficiency

Inflammatory Response

- Endothelial injury and leukocyte infiltration:
 - Neutrophils
 - T lymphocytes
 - Monocyte/macrophages
- Activation of leukocytes by inflammatory mediators

Sepsis and Acute Renal Failure

- Renal vasoconstriction with intact tubular function
- Tumor necrosis factor
- Reactive oxygen species

From the Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Denver, CO. Received September 21, 2004; accepted in revised form December 2, 2004. Originally published online as doi:10.1053/ajkd.2004.12.008 on January 26, 2005. Address reprint requests to Charles L. Edelstein, MD, PhD, Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Box C281, 4200 E. 9th Ave., Denver, CO 80262. E-mail: Charles.edelstein@uchsc.edu © 2005 by the National Kidney Foundation, Inc. 0272-6386/05/4503-0022$30.00/0 doi:10.1053/ajkd.2004.12.008
Inducible nitric oxide synthase
- Cytokines
- Glomerular and vascular microthrombosis
- Translation of above experimental results to patients warrants caution

MAKING THE DIAGNOSIS

Characteristic Signs
- Decrease in glomerular filtration rate (GFR) over a period of hours to days
- Failure to excrete nitrogenous waste products
- Failure to maintain fluid and electrolyte homeostasis

Clinical Diagnosis
- Increase in blood urea nitrogen only (prerenal acute renal failure [ARF])
- Increase in blood urea nitrogen and serum creatinine
- Decrease in GFR:
 - Calculated GFR:
 - Cockcroft-Gault formula (accurate only if renal function is in a steady state)
 - Measured GFR:
 - Creatinine clearance
 - Urea clearance
 - Inulin clearance (research tool)
 - Iodothalamate clearance (gold standard, expensive)
- Oliguria, <400 mL urine per day
- Serum markers of renal function (future):
 - Cystatin C
- Urine biomarkers of tubular injury (future):
 - Interleukin 18
 - Kidney injury molecule 1
 - Neutrophil gelatinase-associated lipocalin

ETIOLOGY

Prerenal Azotemia

Definition
- Acute rise in blood urea nitrogen, serum creatinine, or both
- Renal hypoperfusion
- Bland urine sediment
- Fractional excretion of sodium <1%

- Return of renal function to normal within 24 to 72 hours of correction of the hypoperfused state

Causes
- Intravascular volume depletion:
 - Hemorrhage
 - Renal fluid loss
 - Gastrointestinal losses
 - Skin loss of sweat
 - Third-space losses
- Reduced cardiac output:
 - Congestive heart failure
 - Cardiogenic shock
 - Pericardial effusion with tamponad
 - Massive pulmonary embolism
- Increased renal vascular resistance:
 - Anesthesia
 - Hepatorenal syndrome
 - Prostaglandin inhibitors
 - Aspirin
 - Nonsteroidal anti-inflammatory drugs (NSAIDs)
- Vasoconstricting drugs:
 - Cyclosporine
 - Tacrolimus
 - Radiocontrast
- Decreased intraglomerular pressure
 - Angiotensin-converting enzyme inhibitors
 - Angiotensin II receptor blockers

Postrenal Azotemia
- Common denominator in this setting is obstruction to the flow of urine.

Bilateral ureteral obstruction or unilateral obstruction in a solitary kidney:

- Intraureteral:
 - Stones
 - Blood clots
 - Papillary necrosis
- Extraperireteral:
 - Bladder
 - Prostatic cancer
 - Cervical cancer
 - Retroperitoneal fibrosis

Bladder neck obstruction
- Prostatic hypertrophy
- Prostatic cancer
Bladder cancer
• Autonomic neuropathy
• Ganglionic blocking agents: urethral obstruction
• Valves
• Strictures

Intrarenal or Intrinsic ARF

Vascular
• Bilateral renal artery:
 ▪ Stenosis
 ▪ Thrombosis
 ▪ Embolism
 ▪ Operative arterial cross clamping
• Bilateral renal vein
 ▪ Thrombosis
• Small vessel
 ▪ Atheroembolic disease
 ▪ Thrombotic microangiopathy
 ▪ Hemolytic uremic syndrome/thrombotic thrombocytopenic purpura
 ▪ Scleroderma renal crisis
 ▪ Malignant hypertension
 ▪ Hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome
 ▪ Postpartum ARF

Glomerular
• When ARF develops in glomerulonephritis (GN) setting, rapidly progressive GN (RPGN) should be excluded
• Histologically a RPGN manifests as a crescentic GN on kidney histology
• Causes of RPGN are classified according to immunofluorescence staining on kidney biopsy:
 ▪ Linear immune complex deposition:
 ▪ Goodpasture’s syndrome
 ▪ Granular immune complex deposition:
 ▪ Postinfectious
 ▪ Infective endocarditis
 ▪ Lupus nephritis
 ▪ Immunoglobulin A (IgA) nephropathy
 ▪ Henoch-Schönlein purpura
 ▪ Membranoproliferative GN
 ▪ No immune deposits:
 ▪ Wegener’s granulomatosis
 ▪ Polyarteritis nodosa
 ▪ Churg Strauss
 ▪ Idiopathic crescentic GN

Interstitium
• Causes:
 ▪ Bacterial pyelonephritis
 ▪ Drug-induced acute allergic interstitial nephritis (AIN):
 ▪ Antibiotics
 ▪ Antituberculosis drugs
 ▪ Diuretics
 ▪ NSAIDs
 ▪ Anticonvulsant drugs
 ▪ Allopurinol
 ▪ Many other drugs

Tubular
• Causes of acute tubular necrosis (ATN):
 ▪ Renal ischemia:
 ▪ Sepsis
 ▪ Shock
 ▪ Hemorrhage
 ▪ Trauma
 ▪ Pancreatitis
 ▪ Exogenous toxins and nephrotoxic drugs:
 ▪ Aminoglycosides
 ▪ Cisplatin
 ▪ Radiocontrast
 ▪ Ethylene glycol
 ▪ Endogenous toxins:
 ▪ Myoglobin (rhabdomyolysis)
 ▪ Hemoglobin (incompatible blood transfusion, acute falciparum malaria)
 ▪ Uric acid (acute uric acid nephropathy)

EVALUATION OF PATIENT

First Steps in Diagnosis and Treatment

Careful data tabulation and recording
• Past and current laboratory data
• Vital signs
• Daily weights
• Intake and output
• Fluid and medication review
• Did ARF develop outside hospital, in hospital but not ICU, or in ICU?
• Thorough history and physical examination

Urine Sediment
• Prerenal
• Postrenal
- GN/vasculitis
- AIN
- ATN
- Ethylene glycol intoxication
- Acute uric acid nephropathy
- Obstructive uropathy due to sulfadiazine
- Rhabdomyolysis

Urine Chemistry
- Specific gravity
- Sodium
- Creatinine
- Urea nitrogen
- Osmolality

Radiology
- Renal ultrasonography (procedure most widely used)
- Isotope renography
- Computed tomography
- Cystoscopy and retrograde or antegrade pyelography

Renal Biopsy in ARF

Indications
- ARF of unknown cause
- Suspicion of GN, systemic disease (e.g., vasculitis), or AIN
- ATN not recovering after 4 to 6 weeks of dialysis with no more recurrent insults

Pathology
- Not much true necrosis of tubular cells
- Tubular swelling and vacuolization
- Tubular loss of brush border
- Apical blebbing of tubular cytoplasm
- Tubular cell loss manifest as gaps in tubular epithelium
- Lack of histological findings that predict clinical outcome

Know the Clinical Features of Common Causes of ARF
- Hepatorenal syndrome
- Vasomotor ARF due to NSAIDs, cyclosporine, tacrolimus, angiotensin-converting enzyme inhibitors
- Radiographic contrast nephropathy
- Atheroembolic disease
- Thrombotic microangiopathies
- Aminoglycoside nephrotoxicity
- Rhabdomyolysis
- Acute uric acid nephropathy
- ARF in patients with acquired immunodeficiency syndrome
- ARF in bone marrow transplant patients

MANAGEMENT

General
- Management of the complications of ARF is important
- Dialysis is the only Food and Drug Administration–approved treatment
- No specific treatments of established ARF

Prerenal Azotemia
- Correct underlying disorder
- Monitor response to therapy:
 - Daily weight
 - Clinical examination of volume status
 - Central venous catheter
 - Swan-Ganz catheter

Renal or Intrinsic ARF

Conservative treatment
- Avoidance of renal-dose dopamine
- Use of diuretics to convert oliguric to nonoliguric ARF is controversial
- Avoidance of nephrotoxic drugs
- Adjustment of drug dosages based on measured or best estimate of GFR, not merely on serum creatinine
- Nutrition (enteral nutrition preferred)

Dialysis therapy
- Indications to start dialysis in ARF:
 - Not specific
 - Absolute indications:
 - Pulmonary edema unresponsive to conservative therapy
 - Hyperkalemia unresponsive to conservative therapy
 - Metabolic acidosis unresponsive to conservative therapy
 - Symptomatic uremia: encephalopathy, pericarditis
- Individualized by nephrologic consultation
Timing of initiation of dialysis (recent studies):
- “Prophylactic” hemodialysis (HD) in chronic kidney disease patients prior to coronary artery bypass graft may have survival benefit
- “Prophylactic” continuous venovenous hemofiltration (CVVH) in high-risk patients may prevent contrast nephropathy

Dose of dialysis:
- Alternate-day HD
- Daily HD
- Continuous

Main modalities of dialysis:
- Intermittent HD (IHD)
- Continuous renal replacement therapy (CRRT):
 - CVVH
 - Continuous venovenous HD (CVVHD)
 - Continuous venovenous hemodiafiltration (CVVHDF)
 - Sustained low-efficiency daily dialysis (SLEDD)
 - Acute peritoneal dialysis (PD)
- IHD and CRRT regarded as equivalent methods for ARF treatment
- CRRT may be modality of choice in critically ill, hypotensive patients
- IHD may be used in mobile, less ill patients without hypotension
- Dialysis modality may depend on facility-specific issues:
 - Experience
 - Nursing resources
 - Cost
 - Technical proficiency
- In summary, choice of IHD versus CRRT should be individualized at nephrology consultation

Type of dialysis membrane:
- Bioincompatible:
 - Cellulose
 - Cuprophane
 - Hemophane
- Biocompatible (most widely used):
 - Polyamides
 - Polycarbonate
 - Polysulfone

Temporary vascular access:
- Internal jugular vein:
 - For longer duration
 - Lower infection risk
 - Technically more difficult to insert
 - Lower failure rate
- Femoral vein:
 - For shorter duration
 - Higher infection risk
 - Technically easier to insert
 - Higher failure rate
- Subclavian vein
 - Avoid if possible

ADDITIONAL READING